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8.4 QR-Factorization’

One of the main virtues of orthogonal matrices is that they can be easily inverted—the transpose
is the inverse. This fact, combined with the factorization theorem in this section, provides a useful
way to simplify many matrix calculations (for example, in least squares approximation).

Definition 8.6 QR-factorization

Let A be an m x n matrix with independent columns. A QR-factorization of A expresses
it as A = QR where Q is m X n with orthonormal columns and R is an invertible and upper
triangular matrix with positive diagonal entries.

The importance of the factorization lies in the fact that there are computer algorithms that accom-
plish it with good control over round-off error, making it particularly useful in matrix calculations.
The factorization is a matrix version of the Gram-Schmidt process.

Suppose A = [ Cf C -+ Cy } is an m X n matrix with linearly independent columns cy, ca, ..., Cj.
The Gram-Schmidt algorithm can be applied to these columns to provide orthogonal columns
fi, fH, ..., £, where f; = c; and

e, Gfip ebhe 0 cefi
b= e ppph — it [f i -1

for each k=2, 3, ..., n. Now write q; = mfk for each k. Then q;, q,, ..., q, are orthonormal
columns, and the above equation becomes

[fellax = ek — (cx-ap)a; — (k- dp)dp — -+ — (Ck Qg1 ) Ak—1
Using these equations, express each c; as a linear combination of the q;:

ci = |[fiflay

2 = (c2-qp)a;+[|f2f[a,

c3 = (c3-qp)a;+(c3-ay)qy +|[/f3]/q;

¢ = (cp-an)a+ (o )+ (Cn-az)az+--- +[Iflla,
These equations have a matrix form that gives the required factorization:

A=[c ¢ ¢ - ¢ ]
[ Ifi] c2rap ez o ocarqy
0 B ca - e
=[aq @ a - q ]| O 0 Bl - cias (8.5)
|0 0 0 w1l |
Here the first factor Q = [ a B 9dG3 - q } has orthonormal columns, and the second factor is

an n X n upper triangular matrix R with positive diagonal entries (and so is invertible). We record
this in the following theorem.

"This section is not used elsewhere in the book



428 » CONTENTS

Theorem 8.4.1: QR-Factorization

Every m x n matrix A with linearly independent columns has a QR-factorization A = QR
where Q has orthonormal columns and R is upper triangular with positive diagonal entries.

The matrices Q and R in Theorem 8.4.1 are uniquely determined by A; we return to this below.

Example 8.4.1

Find the QR-factorization of A =

S = O =
—_ = = O

OO = =

Solution. Denote the columns of A as ¢y, cp, and c3, and observe that {cj, ¢z, c3} is
independent. If we apply the Gram-Schmidt algorithm to these columns, the result is:

fi=c= , b=c-ifi=

2

0
1 0
, and f3=C3+§f1—f2= 0
1

O = NI— =

Write q; = Hf_l'llfj for each j, so {q;, qp, q3} is orthonormal. Then equation (8.5) preceding
J
Theorem 8.4.1 gives A = OR where

11
N V3 1 0
_ _| 2 _ 1
O0=[q a aq;]= Y = w 0 2 o
0\661 0 0 V6
7 L =1
Ifi]] c2-q; c3-q \/_? ? 1 2\}_\-/{
R=| 0 [ esa|=[0 ¥ B i=-]10+V3 V3
00l ;27 Ploo v

The reader can verify that indeed A = QR.

If a matrix A has independent rows and we apply QR-factorization to AT, the result is:

Corollary 8.4.1

If A has independent rows, then A factors uniquely as A = LP where P has orthonormal rows
and L is an invertible lower triangular matrix with positive main diagonal entries.

Since a square matrix with orthonormal columns is orthogonal, we have



8.4. QR-Factorization = 429

Theorem 8.4.2

Every square, invertible matrix A has factorizations A = QR and A = LP where Q and P are
orthogonal, R is upper triangular with positive diagonal entries, and L is lower triangular
with positive diagonal entries.

Remark

In Section ?? we found how to find a best approximation z to a solution of a (possibly inconsistent)
system Ax = b of linear equations: take z to be any solution of the “normal” equations (ATA)z =
ATb. If A has independent columns this z is unique (A”A is invertible by Theorem 5.4.3), so it
is often desirable to compute (ATA)~!. This is particularly useful in least squares approximation
(Section ??). This is simplified if we have a QR-factorization of A (and is one of the main reasons
for the importance of Theorem 8.4.1). For if A = QR is such a factorization, then 0" Q =1, because
Q has orthonormal columns (verify), so we obtain

ATA=R"Q"QR=R"R

Hence computing (ATA)~! amounts to finding R~!, and this is a routine matter because R is upper
triangular. Thus the difficulty in computing (A7A)~! lies in obtaining the QR-factorization of A.

We conclude by proving the uniqueness of the QR-factorization.

Theorem 8.4.3

Let A be an m x n matrix with independent columns. If A= QR and A = QR are
QR-factorizations of A, then Q1 = Q and Ry =R.

Proof. Write Q=|c¢; ¢ -+ ¢, } and Q| = [ d d, --- d, } in terms of their columns, and
observe first that Q' Q9 =1, = QlTQl because Q and Qp have orthonormal columns. Hence it suffices
to show that Q1 = Q (then R; = Q{A = QTA =R). Since QlTQl = I,,, the equation QR = QR gives
QlTQ = R|R": for convenience we write this matrix as

0l0=RR'= [ #ij ]
This matrix is upper triangular with positive diagonal elements (since this is true for R and Ry), so
ti; > 0 for each i and ;; =0 if i > j. On the other hand, the (i, j)-entry of QT Q is dich =d;-cj, so
we have d;-cj =1 for all i and j. But each c; is in span{d;, d, ..., d,} because Q = Q1(RiR71).
Hence the expansion theorem gives
cj=(dr-cj)di+(dz-cj)da 4+ (dy-cj)dp = t1;d1 +1rjda + -+ +1j;d;

because d;-c; =1t;; = 0 if i > j. The first few equations here are

cp = tndg
cy = tppd)+1ds
c3 = t13d; +13dy +133d3

cs = t14dy +124dy +134d3 +144dy
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The first of these equations gives 1 = ||c1|| = ||t11d1]| = |t11]||d1|| = 11, whence ¢; = d;. But then we
have tjp =dj-cy =c;-cy =0, so the second equation becomes ¢y = t>d,. Now a similar argument
gives ¢y = dp, and then #;3 = 0 and tp3 = 0 follows in the same way. Hence c3 = t33d3 and c3 = d3.
Continue in this way to get c; = d; for all i. This means that Q; = Q, which is what we wanted.

Exercises for 8.4

[l

Exercise 8.4.1
factorization of A.

In each case find the QR-

1 =17 21
a)A:_lo b)A:11
11 17 T 1 10
110 1 01
)A=11 0 0 da=1 46 1
00 0] 1 -1 0
(2 ] 5 3
1 _ 1
boo=5| T Ty lr=kl0 7]
T 110
1 01
_ 1
0= ¢ 1 1]
1 -1
30 —1
R=-L]103 1
3
“loo 2

Exercise 8.4.2 Let A and B denote matrices.

a. If A and B have independent columns, show
that AB has independent columns. [Hint:
Theorem 5.4.3.]

b. Show that A has a QR-factorization if and only
if A has independent columns.

c. If AB has a QR-factorization, show that the
same is true of B but not necessarily A. [Hint:

Consider AAT where A = [ bo-o ]]

1 1 1
If A has a QR~factorization, use (a). For the converse
use Theorem 8.4.1.

Exercise 8.4.3 If R is upper triangular and invert-
ible, show that there exists a diagonal matrix D with
diagonal entries +1 such that Ry = DR is invertible,
upper triangular, and has positive diagonal entries.

Exercise 8.4.4 If A has independent columns, let
A = QR where Q has orthonormal columns and R is
invertible and upper triangular. [Some authors call
this a QR-factorization of A.] Show that there is a di-
agonal matrix D with diagonal entries +1 such that
A = (OD)(DR) is the QR-factorization of A. [Hint:
Preceding exercise.|
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