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8.4 QR-Factorization7

One of the main virtues of orthogonal matrices is that they can be easily inverted—the transpose
is the inverse. This fact, combined with the factorization theorem in this section, provides a useful
way to simplify many matrix calculations (for example, in least squares approximation).

Definition 8.6 QR-factorization

Let A be an m×n matrix with independent columns. A QR-factorization of A expresses
it as A = QR where Q is m×n with orthonormal columns and R is an invertible and upper
triangular matrix with positive diagonal entries.

The importance of the factorization lies in the fact that there are computer algorithms that accom-
plish it with good control over round-off error, making it particularly useful in matrix calculations.
The factorization is a matrix version of the Gram-Schmidt process.

Suppose A=
[

c1 c2 · · · cn
]

is an m×n matrix with linearly independent columns c1, c2, . . . , cn.
The Gram-Schmidt algorithm can be applied to these columns to provide orthogonal columns
f1, f2, . . . , fn where f1 = c1 and

fk = ck − ck·f1
‖f1‖2 f1 − ck·f2

‖f2‖2 f2 −·· ·− ck·fk−1
‖fk−1‖2 fk−1

for each k = 2, 3, . . . , n. Now write qk =
1

‖fk‖fk for each k. Then q1, q2, . . . , qn are orthonormal
columns, and the above equation becomes

‖fk‖qk = ck − (ck ·q1)q1 − (ck ·q2)q2 −·· ·− (ck ·qk−1)qk−1

Using these equations, express each ck as a linear combination of the qi:
c1 = ‖f1‖q1
c2 = (c2 ·q1)q1 +‖f2‖q2
c3 = (c3 ·q1)q1 +(c3 ·q2)q2 +‖f3‖q3
... ...

cn = (cn ·q1)q1 +(cn ·q2)q2 +(cn ·q3)q3 + · · ·+‖fn‖qn

These equations have a matrix form that gives the required factorization:
A =

[
c1 c2 c3 · · · cn

]

=
[

q1 q2 q3 · · · qn
]


‖f1‖ c2 ·q1 c3 ·q1 · · · cn ·q1
0 ‖f2‖ c3 ·q2 · · · cn ·q2
0 0 ‖f3‖ · · · cn ·q3
... ... ... . . . ...
0 0 0 · · · ‖fn‖

 (8.5)

Here the first factor Q =
[

q1 q2 q3 · · · qn
]

has orthonormal columns, and the second factor is
an n×n upper triangular matrix R with positive diagonal entries (and so is invertible). We record
this in the following theorem.

7This section is not used elsewhere in the book
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Theorem 8.4.1: QR-Factorization

Every m×n matrix A with linearly independent columns has a QR-factorization A = QR
where Q has orthonormal columns and R is upper triangular with positive diagonal entries.

The matrices Q and R in Theorem 8.4.1 are uniquely determined by A; we return to this below.

Example 8.4.1

Find the QR-factorization of A =


1 1 0

−1 0 1
0 1 1
0 0 1

.

Solution. Denote the columns of A as c1, c2, and c3, and observe that {c1, c2, c3} is
independent. If we apply the Gram-Schmidt algorithm to these columns, the result is:

f1 = c1 =


1

−1
0
0

 , f2 = c2 − 1
2f1 =


1
2
1
2
1
0

 , and f3 = c3 +
1
2f1 − f2 =


0
0
0
1

 .

Write q j =
1

‖f j‖f j for each j, so {q1, q2, q3} is orthonormal. Then equation (8.5) preceding
Theorem 8.4.1 gives A = QR where

Q =
[

q1 q2 q3
]
=


1√
2

1√
6

0
−1√

2
1√
6

0

0 2√
6

0

0 0 1

= 1√
6


√

3 1 0
−
√

3 1 0
0 2 0
0 0

√
6



R =

 ‖f1‖ c2 ·q1 c3 ·q1
0 ‖f2‖ c3 ·q2
0 0 ‖f3‖

=


√

2 1√
2

−1√
2

0
√

3√
2

√
3√
2

0 0 1

= 1√
2

 2 1 −1
0

√
3

√
3

0 0
√

2


The reader can verify that indeed A = QR.

If a matrix A has independent rows and we apply QR-factorization to AT , the result is:

Corollary 8.4.1

If A has independent rows, then A factors uniquely as A = LP where P has orthonormal rows
and L is an invertible lower triangular matrix with positive main diagonal entries.

Since a square matrix with orthonormal columns is orthogonal, we have
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Theorem 8.4.2
Every square, invertible matrix A has factorizations A = QR and A = LP where Q and P are
orthogonal, R is upper triangular with positive diagonal entries, and L is lower triangular
with positive diagonal entries.

Remark
In Section ?? we found how to find a best approximation z to a solution of a (possibly inconsistent)
system Ax = b of linear equations: take z to be any solution of the “normal” equations (AT A)z =
AT b. If A has independent columns this z is unique (AT A is invertible by Theorem 5.4.3), so it
is often desirable to compute (AT A)−1. This is particularly useful in least squares approximation
(Section ??). This is simplified if we have a QR-factorization of A (and is one of the main reasons
for the importance of Theorem 8.4.1). For if A = QR is such a factorization, then QT Q = In because
Q has orthonormal columns (verify), so we obtain

AT A = RT QT QR = RT R

Hence computing (AT A)−1 amounts to finding R−1, and this is a routine matter because R is upper
triangular. Thus the difficulty in computing (AT A)−1 lies in obtaining the QR-factorization of A.

We conclude by proving the uniqueness of the QR-factorization.

Theorem 8.4.3
Let A be an m×n matrix with independent columns. If A = QR and A = Q1R1 are
QR-factorizations of A, then Q1 = Q and R1 = R.

Proof. Write Q =
[

c1 c2 · · · cn
]

and Q1 =
[

d1 d2 · · · dn
]

in terms of their columns, and
observe first that QT Q = In = QT

1 Q1 because Q and Q1 have orthonormal columns. Hence it suffices
to show that Q1 = Q (then R1 = QT

1 A = QT A = R). Since QT
1 Q1 = In, the equation QR = Q1R1 gives

QT
1 Q = R1R−1; for convenience we write this matrix as

QT
1 Q = R1R−1 =

[
ti j

]
This matrix is upper triangular with positive diagonal elements (since this is true for R and R1), so
tii > 0 for each i and ti j = 0 if i > j. On the other hand, the (i, j)-entry of QT

1 Q is dT
i c j = di ·c j, so

we have di ·c j = ti j for all i and j. But each c j is in span{d1, d2, . . . , dn} because Q = Q1(R1R−1).
Hence the expansion theorem gives

c j = (d1 ·c j)d1 +(d2 ·c j)d2 + · · ·+(dn ·c j)dn = t1 jd1 + t2 jd2 + · · ·+ t j jdi

because di ·c j = ti j = 0 if i > j. The first few equations here are

c1 = t11d1
c2 = t12d1 + t22d2
c3 = t13d1 + t23d2 + t33d3
c4 = t14d1 + t24d2 + t34d3 + t44d4
... ...
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The first of these equations gives 1 = ‖c1‖= ‖t11d1‖= |t11|‖d1‖= t11, whence c1 = d1. But then we
have t12 = d1 ·c2 = c1 ·c2 = 0, so the second equation becomes c2 = t22d2. Now a similar argument
gives c2 = d2, and then t13 = 0 and t23 = 0 follows in the same way. Hence c3 = t33d3 and c3 = d3.
Continue in this way to get ci = di for all i. This means that Q1 = Q, which is what we wanted.

Exercises for 8.4

Exercise 8.4.1 In each case find the QR-
factorization of A.

A =

[
1 −1

−1 0

]
a) A =

[
2 1
1 1

]
b)

A =


1 1 1
1 1 0
1 0 0
0 0 0

c) A =


1 1 0

−1 0 1
0 1 1
1 −1 0

d)

b. Q = 1√
5

[
2 −1
1 2

]
, R = 1√

5

[
5 3
0 1

]

d. Q = 1√
3


1 1 0

−1 0 1
0 1 1
1 −1 1

,

R = 1√
3

 3 0 −1
0 3 1
0 0 2


Exercise 8.4.2 Let A and B denote matrices.

a. If A and B have independent columns, show
that AB has independent columns. [Hint:
Theorem 5.4.3.]

b. Show that A has a QR-factorization if and only
if A has independent columns.

c. If AB has a QR-factorization, show that the
same is true of B but not necessarily A. [Hint:

Consider AAT where A =

[
1 0 0
1 1 1

]
.]

If A has a QR-factorization, use (a). For the converse
use Theorem 8.4.1.

Exercise 8.4.3 If R is upper triangular and invert-
ible, show that there exists a diagonal matrix D with
diagonal entries ±1 such that R1 = DR is invertible,
upper triangular, and has positive diagonal entries.

Exercise 8.4.4 If A has independent columns, let
A = QR where Q has orthonormal columns and R is
invertible and upper triangular. [Some authors call
this a QR-factorization of A.] Show that there is a di-
agonal matrix D with diagonal entries ±1 such that
A = (QD)(DR) is the QR-factorization of A. [Hint:
Preceding exercise.]
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